
Lt

T-__ NAVAL AEROSPACE MEDICAL RESEARCH LABORATORY
__ • NAVAL AIR STATION, PENSACOLA, FL 32508-5700

NAMRL Special Report 92-1

USING CONSTRAINT
SATISFACTION NETWORKS TO

STUDY AIRCREW SELECTION FOR
"ADVANCED COCKPITS

David J. Blower

92-31621

92 12 16 061
Approved for public relept, distribution unlimited.



Reviewed and approved -

A. i ,~f-czwN, c pr, MeUSN ..
Commanding Officer

ESEl

This research was sponsored by the Naval Medical Research and Development Command under work unit
62233N MM33P30.001-7054 DN240538.

The views expressed in this article are those of the authors and do not reflect the official policy or position of
the Department of the Navy, Department of Defense, nor the U.S. Government.

Volunteer subjects were recruited, evaluated, and employed in accordance with the procedures specified in the
Department of Defense Directive 3216.2 and Secretary of the Navy Instruction 3900.39 series. These instructions
are based upon voluntary informed consent and meet or exceed the provisions of prevailing national and
international guidelines.

Trade names of materials and/or products of commercial or nongovernment organizations are cited as needed
for precision. These citations do not constitute official endorsement or approval of the use of such commercial
materials and/or products.

Reproduction in whole or in part is permitted for any purpose of the United States Government.



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources,

gathering an maintainig the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington. VA 22202-4302. and to the Office of MiJnagement and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1992 -nt-4m n÷ O0 - _1• 91
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Using Constraint Satisfaction Networks to Study
Airerew Spl.ptinn fnr Advanred C-nrkpitn'\l4

6. AUTHOR(S) 62233N MM33P30.00;-7054

D.J. Blower
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Aerospace Medical Research Laboratory
Naval Air Station, Bldg. 1953
Pensacola, FL 32508-5700

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

Naval Medical Research and Development Command
National Naval Medical Center, Bldg. I
Bethesda, MD 20889-5044

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATE,'AENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Pilot selection techniques for the U.S. Navy must meet the challenges offered by the
next generation of aircraft. One specific technological advance is likely to be the
introduction of machine intelligence into the cockpit to assist pilots in their
assigned tasks. We presently do not have any psychological tests in our selection
toolkit to measure the cognitive skills needed to interact optimally with machine
intelligence. This research has the goal of developing psychological tests, together
with the accompanying mathematical models, to measure individual differences in pilot
candidates with regard to cooperative human-machine problem solving. The groundwork
for a constraint satisfaction network (CSN) approach to cooperative human-machine
problem solving was laid down. The details and terminology of a simple CSN were
explained. An algorithm to calculatp the minimum energy of a CSN was explored in
great depth. This algorithm is important because it is the basis for a numerical
solution to the mathematical model underlying the CSN.

14. SUr3JECT TERMS 15. NUMBER OF PAGES

Human-machine cooperative problem solving, 16.

Constraint satisfaction networks, PRICE CODE

Simulated annealin
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNC1ASSTFTFfl IIN£I ASSTFTFnl IINt1 ASSTPT[Trr _ _

NSN 7540-01-280-5500 Standard Form 295 (Rev. 2-89)
Prescribed by ANA Sid Z39-ýb
298.c02



(This page intentionally blank.)



SUMMARY PAGE

THE PROBLEM

Pilot selection techniques for the U.S. Navy must meet the challenges offered by the
next generation of aircraft. One specific technological advance is likely to be the intro-
duction of machine intelligence into the cockpit to assist pilots in their assigned tasks.
We presently do not have any psychological tests in our selection toolkit to measure the
cognitive skills needed to interact optimally with machine intelligence. This research has
the goal of developing psychological tests, together with the accompanying mathematical
models, to measure individual differences in pilot candidates with regard to cooperative
human-machine problem solving.

FINDINGS

The groundwork for a constraint satisfaction network (CSN) approach to cooperative
human-machine problem solving was laid down. The details and terminology of a simple
CSN were explained. An algorithm to calculate the minimum energy of a CSN was ex-
plored in great depth. This algorithm is important because it is the basis for a numerical
solution to the mathematical model underlying the CSN. I showed how this algorithm
generated probability mass functions, which will be extremely helpful in practical exper-
iments where human-machline performance needs to be quantified.

RECOMMENDATIONS

This research project should be continued forward to its next phase. The next step
would be to look at larger CSNs as practical models for the cooperative human-machine
problem solving endeavoi. Experiments with pilot candidates on a simple problem solving
task will provide the data to assign weights, or constraints, to a CSN. This will mark the
starting point of an effort to measure individual differences using such a model.
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INTRODUCTION

Aircrew selection must continuously attempt to keep pace with the changes wrought
by advances in technology. A highly significant example of a breakthrough in computer
technology is the introduction of artificial intelligence into the cockpit. The Air Force's
Pilot's Associate program is a harbinger of such advances. The present medical selection
criteria can, and should be, augmented with results arising from research on the salient
psychological -characteristics of the potential aviators who are expected to fly these aircraft
of the 21st century.

Previous research directed towards naval aviator selection [1] has tended to emphasize
psychomotor skills, spatial/perceptual skills, and personality traits. The investigation
of these skills was appropriate when the Navy (and the Navy's adversaries) flew slower
aircraft so that pilots relied more extensively on visual, auditory, and vestibular cues. In
this situation, superb psychomotor skills could effectively explore the outer fringes of the
aircraft's operating envelope. It is my contention that the next-generation aircraft will
place less premium on these particular psychological skills.

Instead, the pilot will function more as a monitor of various systems onboard the
aircraft and will, in addition, rely on the assistance from intelligent components of the
overall weapons system in order to fly the aircraft to its maximum capabilities. As the
overall manager of this complex weapons system, the pilot must blend in and interact
with other intelligent components. It is an unanswered question as to what psychological
makeup is required for such an integration to take place.

The purpose of this paper is to present the scientific model that will be used to
investigate cooperative problem solving between a human pilot and machine intelligence.
The general outline of the model will be discussed, and some numerical examples will be
explored. In addition, the algorithm used to find numerical solutions to the questions
posed will be examined in some detail. The goal, then, of this initial effort is to begin
developing a metric to assess individual differences in pilot candidates with regard to
some of the cognitive tasks they will be asked to perform in future aircraft.

CONSTRAINT SATISFACTION NETWORKS

Both human and machine intelligence will be represented by a set of processing units.
These units will be highly interconnected as demanded by neural network theory. We
want to see how these units can cooperate to solve a problem. One way of analyzing
such cooperative problem solving behavior is through a constraint satisfaction network,
or CSN [2].

Constraints are expressed locally as weights between some restricted set of processing
units. TI e idea is that the CSN exhibits emergent computational properties. That is,
4olutions to problems can be achieved when local constraints are satisfied in the best



possible fashion. Therefore, the hope is that human intelligence and machine intelligence
can interact to satisfy the maximum number of constraints. The end result of this
emergent activity would achieve the goal of solving some tactical air problem.

The states in the numerical example refer to activation values that the various pro-
cessing units car. assume. The energy refers to the mathematically defined relationship
between the activation values of the processing units and the weights connecting those
units. This energy function captures the constraints imposed on our system, and in some
sense, it can also be considered to embody the knowledge implicit in the network [3].

For our purposes, energy is defined as

E= -wjaiaj + Oai

where wij represents the modifiable connection strength between two processing units i
and j, and ai and ai are the activation vahles of processing units i and j [4]. In our
example the activation values can take on only two values, 1 and 0. The Os represent
threshold values for each unit. They indicate, in some sense, the constraints in the
network for having a particular unit turned on in the absence of any other contributing
evidence. As such, the thresholds represent the a priori knowledge for considering a
particular hypothesis to be true.

If both units assume a value of 1, then the contribution to the overall energy is wij. If
one of the units has an activation value of 0 or both have a value of 0, then the contribution
to the overall energy of these two units i and j will be 0. If wij happens to be negative,
then this latter situation disallows a decrease in the overall energy. Decreasing the overall
energy is what the system is striving to do to reach a problem solution. The point is,
whether unit i assumes an activation value of 1 or 0 could be good or bad depending on
the sign of the connection strength with unit j.

The network is divided into three kinds of units:
1. input units
2. hypothesis units
3. output units

The input units are where the network interfaces with the environment. The particular
problem presented to the network will be coded into activation values for the input units.
Input units retain the values imposed by the problem solving environment; they are not
allowed to change. As the name implies, the hypothesis units represent the activation of
particular hypotheses, which either the human or the machine is considering to be true.,
based on the particular problem input. An activation value of 1 for an hypothesis unit
indicates that the hypothesis is currently being considered to be true; an activation value
of 0 indicates that the hypothesis is currently considered to be false. The hypothesis
units are themselves divided into two groups: 1) those dedicated to the human decision
maker and 2) those dedicated to the machine decision maker. These activation values
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are allowed to change during the course of finding the minimum energy. That is, these
units "turn on" or "turn off" hypotheses in an attempt to best satisfy the constraints (or
equivalently, the knowledge) embedded in the CSN. The final set of units constituting
the network are the output units. All the hypothesis units feed into the output units,
and once the hypothesis units settle or relaz into the best solution, the result is fed into
the output units for the coded solution to the particular problem presented at the input
units. (see Fig. 1)

FURTHER DETAILS OF A CONSTRAINT SATISFACTION NETWORK

Figure 1 shows a portion of a constraint satisfaction network with five hypothesis
units. Assume that the two units in the bottom layer are machine hypothesis units and
the three units in the upper layer are pilot hypothesis units. Further, ignore for the
time being the input units and the output units and concentrate solely on the hypothesis
units. The units are fully interconnected, that is, there is a constraint repiesented as a
weight between each of the two machine hypothesis units and each of the three h.nnan
hypothesis units. These constraints and the thresholds take on the values given in Table
1, which are assigned arbitrarily for the purpose of working out numerical examples.

TABLE 1. The Connection Strengths and Thresholds
for the Example Network of Figure 1.

Connection Strengths Thresholds

W13 =+1 81 = 1

w 14 =+2 02 = 0
W15 =-2 03 = 2
w23 =+3 04 = 2
w24 =-1 Or = 0
W25 -3

Given that we have five units, each of which can take on the value of 0 or 1, a total
of 2' = 32 situations are possible. We will call these possible situations a "state". Each
state has an energy value attached to it. All 32 states and associated energies are listed
in Table 2.
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Human Hypothesis
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Figure 1: A portion of a constraint satisfaction network showing the human and machine hypothesis units.
The units are labelled numerically from 1 to 5. The weights representing the connection strengths between
units are shown in Table 1.
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TABLE 2. The Binary Representation and Energy
of all 32 States.

State Unit Activation Values Energy

s,00000 0
S2  00001 0
S3 00010 -2
S4  00011 -2
S5  00100 -2
$6 00101 -2
S7  00110 -4
S8  00111 -4
59 01000 0
SIO 01001 +3
S11 01010 -1
S12 01011 +2
S13 01100 -5
S14 01101 -2
SIS 01110 -6
S16 01111 -3
S17 10000 -1
S18 10001 +1
S19 10010 -5
S20 10011 -3
S21 10100 -4
S22 10101 -2
S23 10110 -8
S24 10111 -6
525 11000 -1
S26 11001 +4
S27  11010 -4
S28 11011 +1
S29  11100 -7
S30 11101 -2
S31 11110 -10
S32 11111

An example is the calculation of the maximum energy state, S 26, where E +4, and
the minimum energy state, S31, where E = -10. The state S26 occurs when the network
has umits 1, 2, and 5 turned on and units 3 and 4 turned off. This pattern is coded as
11001. Using the formula for the energy,
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Energy (State 26) = -{w1 3 aia 3 + w 14 a0a 4 + w1sala5

+ U723C2a3 + w24a 2a4 + w25a2as

+ 81al + 82a2 + 63a3 + 694a4 + 65as}
Energy (State 26) = -{w1s + w•s + 01 + 82 + O6}

- {(-2) + (-3) + (+1) + (0) + (0)}
-+4

Because units 1 and 5 are both on and units 2 and 5 are both on they are the only
weights that are counted.

On the other hand, S31 is characterized by having units 1, 2, 3, and 4 on and unit 5
off. The energy in this case is

Energy (State 31) f -{W 13ala3 + w14ala 4 + wisalas

+ w23a 2a3 + w24a 2a 4 + w2,a2a,

+ 61al + 0 2a 2 + 83 a 3 + 04a 4 + Oras}
Energy (State 31) = -{W 13 + w14 + W23 + U24 + 01 + 02 + 93 + 04}

= -{(+1) + (+2) + (+3) + (-1) + (+1) + (0) + (2) + (2)}
=-10

The state that satisfies the constraints inherent in the network to the best degree
possible is the state with the minimum energy configuration. By inspection of Table 2,
S31, which we just calculated, has an energy value of -10. With positive weights between
units 1 and 3 and positive weights between units 1 and 4, the network will try to turn these
units on. With negative weights between units 1 and 5 and negativc weights between
units 2 and 5 the network is "happiest" when unit 5 is off as it is in S31. Not all of the
constraints specified in the weights connecting the units can be satisfied simultaneously
though. The network would like units 2 and 4 to be off, but this constraint cannot be
satisfied in S31. So the constraint satisfaction network will be content with satisfying as
many constraints as possible. Such a network solves optimization problems with so called
weak constraints.

FINDING MINIMUM ENERGY STATES OF MUCH LARGER
NETWORKS

With only five units, it is relatively easy to calculate, as we did in Table 2, all possible
activation states of the units and inspect for the state with the minimum encrgy. It
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is equally obvious that this technique becomes impossible with any reasonably sized
network. Combinato:ial explosion sets in and there are just too many states to enumerate,
not to mention calculating the energy function for each state.

An analogous problem exists in trying to integrate a multidimensional integral that
does not yield to an analytical solution. Numerical methods have been invented which
"sample" the integrand at "important" places in order to estimate an answer. These
methods arc usually lumped under the rubric of Monte Carlo solutions. Physicists and
chemists were faced with the same problem when they attempted to study the macro-
scopic behavior of physical systems -aade up of a huge number of atoms [5].

A Monte Carlo solution to these problems was proposed by Metropolis et aL. [6].
An algorithm they proposed has come to be called the Metropolis algorithm and is the
cornerstone of a numerical ,echnique to find the minimum energy states of a constraint
satisfaction network. The Metropolis algorithm works as follows: [7]

1. The algorithm starts with the network in some arbitrarily chosen state. For
example, the algorithm mi-'ht start out in S5 where unit 3 is turned on and units 1, 2, 4,
and 5 are turned off. This state has an energy of -2.

2. A new state of the network is generated by applying a set of moves to the
network. One possible set of moves is to consider "flipping" the activation value of a
randomly chosen unit from a 1 to a 0 or from a 0 to a 1. An example is given in Table
3. From step 1 we know that the network is in S5 . The first column of Table 3 shows
each unit being considered, from unit 1 to unit 5 in turn, for a flip. The second column
indicates the new state that the flip has caused. The final column indicates the change
in energy ckused by the move.

3. A new state is entered according t(. the above strategy by generating a
random number. If the randiom number is between 0 and .20, then flip unit 1; if the
random number is between .20 and .40, then flip unit 2, and so on.

4. The difference in energy (called AE) between the new state just entered
and the old state where the move was initiated is calculated. For example, if the random
number was .37, a move into S13 is called for. From Table 3,

AE = E(final)-E(initial) = -5 - (-2) = -3

If the random number had been .59, then we would have flipped unit 3 and moved into
S1. In this case,

AE = E(final)-E(initial) = 0 - (-2) = +2

5. If AE < 0, then accept the Love into the new state. In the case where we
moved into S13, AE < 0, so we would accept this move.

6. If AE > 0, then accept the monove into the new state with the probability
e-E/T. In the case where we moved into S1, AE > 0. The probability of accepting this
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move is e-2/T where T is a parameter called temperature. The meaning of this parameter

will be explained more fully below. If T = 4, the probability of accepting the move equals

e-AE/r = e-1/2 = .6065.

We generate another random number, and if this number is less than .6065, we accept
the move. Otherwise, we reject this move into the new state.

7. Move from state to state by following the above procedure for a long series
of trials. After this long series of trials, the process will lose memory of the states in
which it started out and eventually reach an equilibrium condition. Statistics of interest
can then be gathered that reflect the behavior of the entire network even though only
a sample o; the total possibilities the network could assume has been realized. In our
case, we might calculate an estimate of the minimum energy and the states where this
minimum is achieved.

TABLE 3. The Possible Transitions to a New State of the
Network From a Given State and Resulting Change in Energy.

Unit Activation Values State Transition AE

00100 -*10100 S,5 -- S21 -4-- -2 = -2
00100 01100 SS-+S13 -5-- -2 = -3
00100 -* 00000 $5 -* S, 0- -2 = +2
00100 -00110 S, S? -4- -2 = -2
00100 - 00101 S5 --* s6 -2- -2 = 0

The essential utility of the Metropolis algorithm is that it enables us to answer key
questions concerning large constraint satisfaction networks. Among other things, it allows
us to find the configuration of activation values that has the lowest energy. This is the
configuration that satisfies the constraints in the best possible manner, or in other words,
makes best use of the prior knowledge embedded within the network. The Metropolis
algorithm is a general heuristic technique which has some mathematical guarantees for
finding answers to optimization problems. Specifically in our case, it is a useful compu-
tational device for finding energy minima in constraint satisfaction networks.

In step 6 above we mentioned a temperature parameter. The addition of this parameter
is an enhancement to the Metropolis algorithm. Starting the process at high values of the
temperature parameter and then very slowly decreasing the temperature by a set schedule
will yield estimates of the minimum value of the function we are trying to minimize. This
technique is called simulated annealing because of its analogy to the physical process of
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heating materials, like glass, to high temperatures, and then slowly cooling to a ground
state where imperfections in the material are reduced [8].

SIMULATED ANNEALING

Table 4 shows how simulated annealing works on the simple constraint satisfaction
network we have been using as an example. It follows the same steps outlincd in the
previous section with the explicit addition of a temperature parameter.

TABLE 4. Representative Trials From the Metropolis Algorithm at
High and Low Temperatures.

Trial Proposed Transition AE RN e-AE/T Accept

Temperature = 100

11 10110l11110 -8-+-10=-2 *** *** Yes
12 11110 11100 -10 - -7 = +3 .99 .97 No
13 11110 -4 01110 -10 -- -6 = +4 .53 .96 Yes

Temperature = .8

6 11110 - 10110 -10 -- -8 - +2 .05 .08 Yes
7 10110 - 10100 -8 -4 -4 = +4 .64 .01 No
8 10110 -00110 -8 -- *-4 +4 .37 .01 No

14 10110 11110 -8--10--2 *** ** Yes
: 11110 -4 01110: ::

20 11110 --4 11011 : :

The upper p-irt of Table 4 shows what typically happens at a high temperature. At
the beginning of trial #11 the network is in S23 with units 1, 3, and 4 on and units 2 and
5 off. Unit 2 was randomly chosen for a flip, in this case from 0 to 1 ("off" to "on"). The
second column shows this proposed transition from S23 to S31. This transition results
in a movement to a region of lower energy seen in the AE column. Any AE < 0 is
automatically accepted. Therefore, recording in the last column that this transition has
been accepted, we flip unit 2 from "off" to "on." (0 to 1).
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With one trial of the Metropolis algorithm completed at a given temperature, we can
proceed to trial #12. From the previous move, we start out in S31 with units 1, 2, 3, and
4 on and unit 5 uff. Unit 4 was randomly chosen for a flip from 1 to 0. In this move to
a region of higher energy, (AE = +3), we must generate a random number to compare
to e-3/100 - .97. The random number turns out to be .99, which is greater than .97, so
we do not accept this proposed transition. Unit 4 is not changed, and we remain in the
same state as at the start of the trial.

At trial #13, we are again trying to move from S31, which we know is the minimum
energy state with an energy of -10, to a different state. Here unit 1 has been randomly
chosen for a flip from 1 to 0, and, as in trial #12, we must be moving from a region
of low energy to a region of relatively higher energy. This is confirmed by checking
that AE = +4. Contrary to the previous trial, the random number .53 is smaller than
e-4/100 = .96. This proposed move is acceptable, even though it is to a region of higher
energy. Unit 1 is turned off, and the subsequent trials at this temperature continue in
similar fashion.

We now turn our attention to the lower part of Table 4 where the temperature has
been considerably lowered. Trial #6 begins with the network again in S31. A proposed
transition involves flipping unit 2 which implies an increase in energy. We will accept
this move wihh probability e-2/.8 = .08. A random number less than .08 is drawn so we
accept this move. So we find ourselves at trial #7 in S 23 contemplating a flit- of unit 4.
This move represents an energy increase of 4 which will probably not be accepted at this
low temperature. In fact, less than 1% of such moves would be accepted. This is reflected
in trials #7 and #8 where proposed transitions with an energy increase this large are
not accepted. Compare this with trial #13 in the upper part of the table where, at a
temperature of 100, a proposed transition with an energy increase of 4 would have been
accepted 96% of the time. Eventually, a proposed transition will result in decreasing the
energy as happens at trial #14. In this case, the network falls into the lowest energy
configuration, and spends most of its time i- this low energy configuration because it is
so very unlikely that a proposed transitio will be accepted. As illustrated with the :est
of the trials in the t.ble low energy configurations of the network are sampled more and
more often as the temperature decreaser-. This is the objective of the simulated annealing
algorithm [9].

An examination of the frequency distiibution of all 32 states at decreasing tempera,
tures reveals how the simulated annealing algorithm converges upon the minimum energy
state. This information is provided in Table 5. The table should be scanned by first fix-
ing on the leftmost temperature column (i.e., where temperature=100) and then reading
down over the rows representing the states. 100 trials of the Metropolis algorithm were
conducted at each temperature so each column will sum to a total of 100.
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TABLE 5. The Frequency Distribution of All 32 States at Decreasing
Temperatures.

State Temperature
100 10 5 4 3 2 1 .9 .8 .7

1 3 2 1 2 0 0 0 0 0 0
2 3 1 0 1 0 0 0 0 0 0
3 1 3 3 1 0 0 0 0 0
4 1 5 2 0 0 0 0 0 0 0
5 7 2 1 2 1 3 0 0 0 0
6 9 1 0 1 2 1 0 0 0 0
7 4 3 2 7 6 0 0 0 0 0
8 6 3 2 5 1 0 0 1 0 0
9 3 0 1 3 0 0 0 0 0 0

10 1 1 0 0 0 0 0 0 0 0
11 1 0 4 5 0 0 0 0 0 0
12 1 2 1 0 0 0 0 0 0 0
13 2 1 4 4 5 5 0 0 0 0
14 2 0 0 2 3 2 0 0 0 0
15 3 5 6 6 9 3 0 0 0 0
16 2 4 0 1 0 1 0 0 0 0
17 2 3 3 1 0 1 0 0 0 0
18 4 4 2 0 0 0 0 0 0 0
19 5 4 7 9 4 9 0 0 0 0
20 6 4 5 2 0 1 0 0 0 0
21 4 4 4 6 3 10 0 0 0 0
22 5 7 1 0 1 1 0 0 0 0
23 4 13 7 6 21 21 13 8 7 4
24 3 5 3 0 4 1 1 9 3 0
25 1 2 3 1 0 0 0 0 0 0
26 4 2 1 0 0 0 0 0 0 0
27 1 6 7 8 4 2 0 0 0 0
28 3 1 1 0 0 0 0 0 0 0
29 1 4 11 10 9 7 15 6 0 4
30 3 1 0 3 0 2 0 0 0 0
31 4 6 17 9 26 26 71 74 90 92
32 1 1 1 3 0 4 0 2 0 0

At the highest temperature the distribution among states is fairly uniform. At high
temperatures all states are visited at random with no particular preference given to low
energy states. As the temperature drops, we begin to notice some departures from unifor-
mity. Some states seem to be accumulating higher counts and there are more zeroes for
other states. The pattern, at this point, is still a little murky. As the temperature contin-
ues to drop, the pattern comes into sharper focus. At T = 1 only four states, S23, S 24 , S 29,
and S31, have been visited by the algorithm. All of these states are low energy states, and
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most importantly, S31, the minimum energy state, has been visited most often. By the
time we stop this process at T = .7, the pattern is quite clear. Only the lowest energy
states have been visited, and S31 predominates, because it accumulated 92% of all visits.
If we were to calculate any function based on this final low temperature distribution, such
as the average energy of the CSN, then S31 would have contributed extensively to the
calculation. This simple numerical example depicts exactly what simulated annealing is
designed for.

CONCLUSIONS

The fundamental elements of a CSN have been defined in this report. The connection
between energy configurations and constraint satisfaction was explored. The Metropolis
algorithm was examined in some detail. Finally, a stepwise numerical example demon-
strated that simulated annealing can find minimum energy configurations.

The research proposed here seeks to explore different cognitive domains that may
be more relevant for the advanced aircraft of the 1990s. The human performance to
be measured will center on decision-making, problem solving, and information transfer
skills. The human pilot and the assistance he receives from machines will together form
a complex system whose performance will depend greatly on the pattern of interaction
between the human and the machine. The goal should be to develop and identify those
qualities in a pilot candidate that optimize this pattern of interaction so that the combined
human/machine performance exceeds what either one could have achieved singly. In
conclusion, the Navy needs factual data on how to select pilot candidates who can best
integrate their decision making and problem solving skills with similar problem solving
capabilities afforded by machine intelligence in the advanced crew stations of the future.
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